
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5707--02-8604

T> RASE — Run-time Automated
Schema Evolution
An Implementation of Schema Evolution
and Mapping

BRIAN SOLAN

GREGORY STERN

MICHAEL PILONE

Effectiveness of Naval Electronic Warfare Systems
Tactical Electronic Warfare Division

April 15, 2002

20020503 063 Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS,

1. REPORT DATE (DD-MM-YYYY)
April 15, 2002

2. REPORT TYPE
Memorandum Report

3. DATES COVERED (From - To)
March 2000-March 2001

4. TITLE AND SUBTITLE

RASE—Run-time Automated Schema Evolution
An Implementation of Schema Evolution and Mapping

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6.AUTHOR(S)

Brian Solan, Gregory Stern, and Michael Pilone

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Tactical Electronic Warfare Division
4555 Overlook Ave., SW
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION REPORT
NUMBER

NRL/MR/5707--02-8604

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR / MONITOR'S ACRONYM(S)

11. SPONSOR / MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Software needs and requirements change over time as application developers fine-tune and expand the features of a software product. When the
software is changed to meet these new requirements, some data structures need to be added and existing ones need to be altered or evolved. This
paper describes an implementation of a sophisticated, dynamically evolving schema. The schema definition supports single and multiple inherit-
ance, fixed length arrays, built-in strings, instances of objects and pointers to other objects. The sample implementation in this report is geared
towards an object database.

15. SUBJECT TERMS

Schema, schema evolution, schema mapping, schema registering, run-time automated schema evolution, RASE, database, object database

16. SECURITY CLASSIFICATION OF:

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

17. LIMITATION
OFABSTRACT

UL

18. NUMBER
OF PAGES

32

19a. NAME OF RESPONSIBLE PERSON
James G. Durbin

19b. TELEPHONE NUMBER (include area

COde) 202-404-7616

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents
Purpose 1
Background 1
Description and Operation 2

Schema Evolution Algorithm Capabilities 2
Schema Evolution Problem 5
Schema Definition 7
Schema Mapping Algorithm 10
Client Schema Mapping Implementation 14
Server Schema Management Implementation 20

Advantages and New Features 27
Alternatives 27
Contributions by Inventors 28
Related Publications ..28

Table of Diagrams and Figures

UML Example 1: Initial Schema 2
UML Example 2: Adding and Removing Fields from Schema 3
UML Example 3: Changing Field Type in Schema 3
UML Example 4: Change Order and Label in Schema 4
UML Example 5: Changing Inheritance 4
UML Example 6: Objects in Initial State 5
UML Example 7: Modified Objects with Evolved Schema 6
UML Example 8: Retrieving Modified Objects 6
UML Example 9: Schema Example 9
UML Example 10: SchemaMap Example 11
UML Example 11: FieldMap Object State Diagram 14

Code Example 1: FooClasslnfo and BarClasslnfo Constructors 10
Code Example 2: HandlerSchemalD Implementation 22
Code Example 3: HandlerSchemaMap execute Method 22
Code Example 4: SchemaFile Implementation 26

Figure 1: DBObject Interface 7
Figure 2: Schema and Classlnfo 8
Figure 3: SchemaMap Example 11
Figure 4: SchemaMap and FieldMap 15
Figure 5: ObjectData and FieldData 16
Figure 6: DBSerializer Class Diagram 17
Figure 7: Saving DBObject Sequence Diagram 18
Figure 8: Loading DBObject Sequence Diagram 19
Figure 9: SchemaFile Class Diagram 20
Figure 10: HandlerSchemalD and HandlerSchemaMap Class Diagram 21

IV

RASE - Run-time Automated Schema Evolution
An Implementation of Schema Evolution and Mapping

Purpose
Software needs and requirements change over time as application developers fine-tune and

expand the features of a software product. When the software is changed to meet these new
requirements, some data structures need to be added and existing ones need to be altered or
evolved.

Schema evolution is the changing of preexisting objects and data structures in a program
over time. Schema is a definition of the fields contained in an object or structure. A field is a
simple data element such as an integer or a string. Schema evolution can include the addition,
deletion or changing of fields in a structure. For the purposes of this paper, the term "object" is
synonymous with the word "structure" and will be used hereafter.

Schema evolution is needed in relational databases, object databases, and distributed
component systems. These systems store objects according to a particular schema or format.
Over time, the definition of these objects may evolve. How the schema is allowed to evolve
depends on each system's implementation. Some systems may not allow the schema to evolve
at all. Others may require the database data and all client programs to be restructured to match
the new schema. More sophisticated systems allow the schema to evolve dynamically so the
client programs do not have to be recompiled as the schema evolves.

This paper describes an implementation of a sophisticated, dynamically evolving schema.
This technique supports evolution of complex object Schemas. The Schemas definition supports
single and multiple inheritance, fixed length arrays, built-in strings, instances of objects and
pointers to other objects.

The sample implementation in this paper is geared towards an object database rather than
other domains such as a relational database or distributed object system. However, this
approach could be used to solve problems in those domains as well. In each of these systems,
there is one central program that acts as the server and many possible clients that connect to the
server. The server stores or distributes the objects to be used by the client applications. The
client applications are often the end user applications.

Background
Any schema evolution implementation has to handle the client side and server side schema

evolution. The object database server defines what is capable for schema evolution and the
client library defines what the programmer using the system is allowed to do.
Current object database servers usually assume that there is only one true schema for each
class. When a change in a class occurs, the corresponding objects in the database must be
morphed. The morphing might occur at compile-time, run-time or manually, using database
administrative tools. Depending on the system, compile-time systems require a schema
maintenance tool to be invoked to update the schema during compilation. Run-time systems
delay registering of the new schema until the client program is executed. In either case, the
object database server maintains the most recent schema. The database may morph all the
object data internally when the new schema is registered or only when the object data is
accessed. In a manual system, the user must use either a maintenance tool or send some
programming commands to transform the old objects to the new objects. Since the
transformation must be done manually, there is large chance for error and corruption but greater
flexibility in the range of transformations performed.

Depending on the capabilities of the server, the client code may need to be recompiled as
the schema is evolved. In existing object databases, if the server object has been evolved and
the client code is using an older version, then the old client program will not be able to access the
newly morphed object. In essence, the old client program is considered to be incorrect and the
server has the current, correct version.

Current solutions require all client applications to be updated and redistributed whenever the
server objects have been evolved. This is a major limitation of the existing schema evolution
algorithms.

Manuscript approved December 2, 2001.

Description and Operation
The schema evolution algorithm being presented in this paper introduces a new solution to

the schema evolution problem. The proposing algorithm registers the new schema at run-time
but leaves the old schema valid and in tact. This algorithm allows older programs and new
programs to coexist. The algorithm is going to be referred to as run-time automated schema
evolution or RASE.

Schema Evolution Algorithm Capabilities
RASE supports several different ways a class can change over time. Any part of a class can

change including: adding, removing, or changing the order of a single or multiple inheritance,
adding or removing a field, changing a field's type, changing a field's order in the object and
renaming a field. The algorithm provides few restrictions about what type of fields can be stored.

The following UML diagrams provides examples of how objects may change over time and
what the schema evolution algorithm supports. The classes shown below are shown in their
initial state.

Car Truck

fMaxSpeed:float
fColor:enum
fName:char[81]

fNumGears:int

i V I i i V A

HondaCivic RangeRoverSUV MAC

fPINrchar [12]
fHatchback:bool

f FourWheel -.bool
fTowWeight:int

fSleepBed:bool
fNumTrailers:int

UML Example 1: Initial Schema

Adding and removing fields are one of the most common operations in schema evolution as
shown in UML Example 2 on the following page. The field f Color is removed from the base
class Car and f Weight is added to the base class Truck. Each class has its own
corresponding schema so in the given example both class Car and class Truck Schemas would
need to be evolved.

Car Truck

fMaxSpeed:float
fColor:cnum
fName:char[81]

fNumGears:int
fWeight:float

ii. li A A

HondaCivic RangeRoverSUV MAC

fPIN:char[12]
fHatchback:bool

fFourWheel:bool
fTowWeight:int

fSleepBed:bool
fNumTrailers:int

UML Example 2: Adding and Removing Fields from Schema

Another common way schema evolves is to change a type of a field. Shown in UML Example 3,
the fTowWeight field's type was changed from int to float for class RangeRoverSUV.

Car Truck

fMaxSpeed:float
fNarae:char[81]

fNumGears:int
fWeight:float

i V i L t V i k

HondaCivic RangeRoverSUV MAC

fPIN:char[12]
fHatchback:bool

fFourWheel:bool
fTowWeight:float

fSleepBed:bool
fNumTrailers: int

UML Example 3: Changing Field Type in Schema

The number and types of variables are only a part of a class's schema definition. The order fields
are defined and names associated with individual fields are an integral part of a schema's
definition. Merely changing the label or the order in which fields are defined constitutes a schema
evolution as shown in UML Example 4 on the next page. In the example, fields for the base class
Car, f MaxSpeed and fName, declaration order is reversed and the field f FourWheel in class
RangeRoverSUV is changed to f 4Wheel.

Car Truck

I ►fName:char[81]
► fMaxSpeed:float

fNumGears:int
fWeight:float

1
I 1

ik A A A

HondaCivic RangeRoverSUV MAC

fPINrchar [12]
fHatchback:bool

f4Wheelrbool
fTowWeight:float

fSleepBed:bool
fNumTrailers:int

UML Example 4: Change Order and Label in Schema

A class's definition is based on its own attributes and the attributes it inherits from parent classes.
Adding or removing an inheritance relationship is a schema change. Changing the order of
multiple inheritance declaration is also a schema change. Using the current example, the original
definition for the RangeRoverSUV using C++ is:

class RangerRoverSUV : public Car, public Truck

A schema change occurs when the declaration order is changed to:
class RangerRoverSUV : public Truck, public Car

UML Example 5 shown below is a graphical representation of the declaration order change
example.

Truck Car

fNumGears:int
fWeight:float

<£=> fName:char[81]
fMaxSpeed:float

I k I k. t V i L

MAC RangeRoverSUV HondaCivic

fSleepBed:bool
fNumTrailers:int

f4Wheel:bool
fTowWeight:float

fPIN:char[12]
fHatchback:bool

UML Example 5: Changing Inheritance

RASE supports almost any type of field an object can store. The field can be any built in
type, a fixed length array, instances of other objects (also known as composition), or pointers to
other objects (also known as aggregation). In the proposed implementation of the algorithm,
pointers to other objects must use a special templated pointer class that use overloaded arrow
operators for pointer de-referencing.

The algorithm does not allow variable length arrays. Variable length arrays are troublesome
since there is no way to determine the length of the array at run-time. This means that the user
cannot have char * as a field but char [256] is valid. To handle the most common variable
length array, char *, a special string class is provided for use in the object database. To

handle other variable length arrays, a templated Array class can be provided to provide run-time
length information.

The schema evolution algorithm allows the user to change their classes without forcing
limitations on the software design. All normal class changes including any alteration of fields or
inheritance have been enumerated in this section and are supported by the proposing algorithm.

Schema Evolution Problem
The schema evolution algorithm needs to allow older client programs and newer client

programs to coexist and access the same object data from the server. The schema evolution
algorithm also cannot limit how the schema is evolved, meaning the programmer should be able
to freely change their classes and the application design.

The schema evolution algorithm problem can be broken into two parts. One problem is how
the schema and the corresponding objects evolve inside the object database server. The other
problem is how the client applications access the server objects regardless of the client schema
version. The implementation of the server schema evolution algorithm must support the desired
functionality of the client. The following example will describe the desired functionality of the
client.

Take a simple schema evolution case where fields are added and removed from classes. The
following example will show how the same objects can be accessed by two versions of an
application, even though the application versions are using slightly different schema. UML
Example 6 shown below represents two objects, aCar and aTruck, created by client application
f oo vi. o. The two objects are created from the initial schema described in UML Example 1 on
page 2. The objects initial state values are stored in the database and shown in the diagram
below.

aCar : HondaCivic

fMaxSpeed = 110
fColor = eRed
fName = "Civic Lx"
fPIN = "123456789"
fHatchback = True

K
foo vl.O

- init state
- init schema

^

Object
Database

aTruck: MAC w

fNumGears = 8
fSleepBed = false
fNumTrailers = 1

UML Example 6: Objects in Initial State

After the application foo vi. o runs, another version of the application, foo v2 . o, checks out
the objects from the database and modifies their values. Except application foo v2 . o is using
the evolved schema described by UML Example 2 on page 3. The schema changes are field
f Color is removed from class Car and fWeight is added to class MAC. Application foo
v2 . o changes the values stored in fields f PIN and fHatchback from the object aCar and sets
a value for f Weight in the object aTruck. Objects aCar and aTruck are saved to the
database in the schema of v2.0. Any fields specific to the schema of foo vi. o are lost. These
value modifications can be seen in UML Example 7 on page 6.

M

aCar : HondaCivic

fMaxSpeed = 110
fName = "Civic Lx"
fPIN = "000112233"
fHatchback = False

foo v2.0
- modified
state

- schema
version 2

|\

w ^

^

Object
Database

aTruck: MAC ^ w

fNumGears = 8
fSleepBed = false
fNumTrailers = 1
fWeight = 2000

UML Example 7: Modified Objects with Evolved Schema

If application foo vi. o runs again and checks out the two objects from the object database, it
should get the modified changes to f PIN and fHatchback as shown in UML Example 8 below.
Notice that even though version 2 of the application assigned a value to field f Weight in object
aTruck, it was not loaded in version 1 of the application since f weight does not exist in the
initial schema. Also notice that the field f Color is assigned to a default value, eWhite, since
the field had been removed from the schema in foo v2 . o. The proposing algorithm will use an
object's default initialization for fields that are added or do not exist in the data from which the
object is loading. In this case, the object aCar is loaded from data saved in version 2.0 of the
schema that no longer has the field f Color.

M

aCar : HondaCivic

fMaxSpeed = 110
fColor = eWhite
fName = "Civic Lx"
fPIN = "000112233"
fHatchback = False

I\
foo vl.O

- modified
state

- init schema

^

M

Object
Database

aTruck: MAC ^

fNumGears = 8
fSleepBed = false
fNumTrailers = 1

UML Example 8: Retrieving Modified Objects

This example shows how two applications using two schema versions are able to checkout and
save the common values of the same objects. This functionality allows for backwards and
forward compatibility between different versions of the same application. Although it does not
provide optimal support for mismatched schemas, it does allow most evolutions to occur without
any difficulty. Having a known, well-defined behavior for mismatched schemas allows developers
to determine if a new schema change will affect various components of their systems and take
action if needed. The ability for different versions of the same application to coexist is crucial for
mature applications where deployment of new application versions is not instantaneous or always
necessary.

Schema Definition

All persistent objects need a means to define their schema, as well as an ability to load and
save their contents. To provide a consistent means of accessing these functions, it is assumed
that every persistent object will implement the DBObj ect interface. In C++, this would be
achieved by inheriting from a class called DBObject. Figure 1 shows the UML for the DBObject
class. The load and save methods are used to serialize the fields of the object into a form that
can be transmitted or saved into a file.

DBObject

+setField(SchemaField &field, Property &val)
+getField(SchemaField kfield, Property &val)
#load(ObjectData *data)
#save(): ObjectData *
if getciassinfo () :C1 ass Info &

Figure 1: DBObject Interface

The setField and getField methods provide a means to access the fields of the class.
These methods will be used in conjunction with the getciassinfo method, which will return the
Schema and in turn, the fields of the class. The setField and getField methods use the
SchemaField class and the Property class to facilitate the accessing of the fields. The
Property class allows for generic storage of any type of field1.

The getciassinfo method is shown in italics because it is not an actual method of the
DBObject class definition. It is listed here, because each class that inherits from either
DBObject or an existing persistent object must define a static getciassinfo method. The
method is static, so that a user can obtain schema information about a particular class without
having to actually create an instance of the class. The details about the class info class are
shown in Figure 2 on page 8. Since the getciassinfo method is static, there is one, and only
one instance of classinf o for each inheritance level of a persistent class. This also means that
there is only one instance of a Schema class for each level of inheritance, since classinf o is
composed of a schema.

The Classinf o class provides a single place to find information about a particular persistent
class. The user can determine the name of the class, and obtain a reference to the Schema for
that class. The Schema class also allows the user to determine the class name, in addition to the
super classes and fields of the class. Schema inherits from a class called CommonSchema. The
CommonSchema class represents the elements of a schema that are common to both the client
and server parts of the system. The Schema class adds elements that are specific to the client
program. Specifically, methods have been added to determine if the schema has been registered
with the server. The Schema class also adds a schemaMap pointer that will be used to load a
particular instance of the class the schema represents.

1 The design of the Property class and its ability to perform generic storage and field type
conversion is described at length in the Naval Research Lab technical memo: A Generic
Preference System Pattern and C++ Implementation. NRL/MR/5707-00-8473, September 29,
2000.

The f Superclass field in CommonSchema is a list of pointers to the super class or classes
of a particular schema. The order in which super classes are added to the list determines the
order of inheritance. CommonSchema is composed of a list of schema fields, represented by the
SchemaField class. This class allows specification of the field name and type. It also keeps

Classlnfo

+getClassName(): String
+getSchema(): Schema &

-fSchema Schema

Schema

Commons chema

+addSuperClass(superclass : CommonSchema *):void
+addSchemaField(field : SchemaField &):void

-fClassName:String
-fSuperclass:CommonSchemaList
-fSchemalD:SchemalD

#_areSchemasRegistered():bool
#_registerSchema():void

-fSchemaMap:*SchemaMap

supers

0. .'

SchemaField

+EFieldType:enum
-fName:String
-fDesc:String
-fType:EfieldType
-fLength:int32
-fPosition:int32

Figure 2: Schema and Classlnfo

track of the order of the fields in the Schema using the f Position field. This field indicates the
position number of the field in the schema. Position numbers start at zero for the first field and go
to n-1 for the last field, where n is the number of fields in the schema. The f Type field is an
enumeration that indicates the data type of the field. This enumeration includes the following
types: eUndefined, eEnum, eBoolean, eChar, elnt8, eUint8, elntl6, eUintl6,
elnt32, eUint32, eFloat32, eDouble64, eString, eArray,
eDBObj ectlnstance, eDBObj ectPtr. The f Length field is used to represent fixed length
arrays. A length of 0 indicates a single instance of the type specified in the fType field. A length
greater then zero indicates a fixed length array of the specified type. A length of -1 indicates an
unknown or uninitialized length. Since strings are used so frequently, but are variable length, we
have included string as a built-in type. The Array type indicates all other variable length arrays,
which is an instance of a special template array class. The DBObj ectlnstance type indicates
instances of other persistent objects. The DBObjectPtr type specifies pointers or references to
other persistent objects.

For each persistent class that is declared, an implementation of the setField, getField,
and getciassinf o methods must be provided. In a real object database system, a code
generator is used to convert the object definitions, in IDL or ODL, into the particular language the
user wants2. The code generator creates a specific subclass of classlnf o for each level of

2 IDL (Interface Definition Language) and ODL (Object Definition Language) are standard
languages for defining object schema and interfaces of objects. The Object Management Group
(OMG) defines the IDL and ODL standards.

inheritance the user defines. The constructor of each subclass of classinf o creates and adds
the SchemaField objects to the instance of Schema contained in Classinf o. A static instance
of the specific Class info class is declared inside each level of inheritance for the user's
classes. The static getciassinf o method returns a reference to the static subclass of
classinf o. The code generator also creates the header file and implementation for each user
declared persistent class. For each class it would provide an implementation of the load, save,
setField, and getField methods, along with various other methods necessary to provide the
functionality the database supports.

UML Example 9 shows an example of a class Foo that inherits from Bar, that inherits from
DBObject. Since Foo and Bar are both independent levels of inheritance from DBObject, they
both must implement the getciassinf o method. A specific subclass of Classinf o is created

DBObject

Bar

+getClass!nfo() {return
sClassInfo; }

-sClassInfo:BarClassInfo
-fUserFieldl:float
-fUserField2[12]:bool

<<singleton>>

BarClassInfo ^-

Schema

Foo

+getclasslnfo() {return
sClassInfo; }

-sClassInfo:FooClassInfo
-fMyList:Ptr<MyList>

<<singleton>>

FooClassInfo

fieldl: SchemaField

fName="fUserFieldl"
fType=Float32
fPosition=0
fLength=0

field2: SchemaField

fName="fUserField2"
fType=Boolean
fPosition=l
fLength=12

super class

Schema

fieldl: SchemaField

fName="fMyList"
fType=Obj ectPtr
fPosition=0
fLength=0

UML Example 9: Schema Example

for both the Foo and Bar classes, called FooClassinf o and BarClassinf o. The constructors
for these methods create and add instances of the SchemaField class to their Schema. Code
Example 1 shows an example implementation of the BarClassinfo and FooClassinfo
constructors.

BarClassinfo::BarClassinfo()

{
setClassName("Bar");
getSchema().addSchemaField(SchemaField(getSchema(), "fUserFieldl",

"User Field 1", SchemaField::eFloat32, 0, 0)) ;

getSchema().addSchemaField(SchemaField(getSchema(), "fUserField2",
"User Field 2", SchemaField::eBoolean, 1, 12));

FooClassinfo::FooClassinfo()

{
setClassName("Foo");
getSchema().addSuperClass(&Bar::getciasslnfo().getSchema());
getSchema().addSchemaField(SchemaField(getSchema(), "fMyList",

"Pointer to MyList", SchemaField::eDBObjectPtr, 0, 0);

}

Code Example 1: FooClassinfo and BarClassinfo Constructors

In general, there are three steps to constructing the class info subclass. First, set the class
name using the setClassName method. Next add a pointer to any superclasses. Finally, call
addSchemaField for each persistent field in the class. The addSchemaField method is relying
on the copy constructor for SchemaField to create it's own copy of the SchemaField that is
passed in. Because of this, a temporary local instance of a SchemaField can be passed in to
the addSchemaField method. The addSuperClass method, in contrast, maintains a pointer to
the actual super class schema that is passed in, allowing the user to easily traverse up the chain
of inheritance and access the real super class's schema.

Schema Mapping Algorithm
The schema mapping algorithm can be broken into two parts, the client side and the server

side. The client must load and save user objects, and register user Schemas with the server. The
server must store current Schemas and their schema ids, allocate new schema ids, and create
schema maps. The following rules and assumptions will be made about the schema-mapping
algorithm described in this paper. Each client contains it's own schema definition for all persistent
classes they wish to exchange with the server. Each unique schema will be assigned a unique
schema id by the server. The server will maintain a list of registered Schemas and their
associated id's. Before client programs can exchange objects with the server, they must register
their Schemas with the server. The server will match the schemas against its list of existing
Schemas and return the appropriate ids. If a schema does not match any existing registered
schema, it will assign it a new schema id.

When saving an object to the server, a client program must serialize the contents of the
user's object into an instance of an objectData class. The users object, along with its schema
id, is saved in the form of its own schema. In the future when serving objectData to a client,
the server will deliver the ob j ectData in the schema of the client that last saved the information.(

The loading algorithm for the client objects assumes that all ObjectData is saved in a different
variation of its schema and needs to be mapped. Upon request, the server can provide the client
with a SchemaMap that maps a particular schema id to all other variations of the class the
schema represents.

To implement object loading and saving, and schema mapping, four classes are needed.
• ObjectData
• FieldData

10

• SchemaMap
• FieldMap

The Obj ectData class represents the contents of a persistent object at one level of inheritance.
It contains the object's schema id, an ordered array of FieldData objects, a list of
Obj ectData's for fields that are instances of other objects, and a list of pointers to the
Obj ectData for any super classes. The FieldData contains the field type information along
with the actual data for the field. The Obj ectData class is used to send and receive the object's
contents to the server. The SchemaMap class is used to represent the mapping of one particular
schema to all other variations of that same schema. The SchemaMap class contains a list of
FieldMap objects, one for each variation of the schema. These FieldMap objects are indexed
according to the id of the schema they represent. The FieldMap contains an array of schema
field position numbers. The array has one entry for each field in the client schema. The position
numbers indicate which obj ectData field is loaded into the client field.

The client side algorithm consists of four steps.
1.

2.

Initialize the client Schemas. At startup time, the client program creates the
Schemas for each persistent user class. The schema id for each of these Schemas is
set to zero, indicating that the schema hasn't been registered with the server yet.
Obtain schema ids from the server. Before any object data can be transferred
between the client and the server, the client's Schemas need to be registered with the
server. Once a schema is sent to the server, the server looks to see if the schema
has been registered previously. If the schema has been registered then the previous
schema id is returned, otherwise a new schema id is assigned.
Obtain the SchemaMap from the server. Once a schema id for a particular schema
has been obtained from the server, the client can request a current schema map for
that schema id at any time. The schema map shows how to map the client schema
into other variations of that class. Figure 3 and UML Example 10 show this for a class
called Foo. The client has one version of Foo with an id of 101. The server knows of

Field # Schema id 101 Schema id 102 Schema id 103

0 0 0 0
1 1 1 1
2 2 4 -
3 3 2 3
4 4 3 4

Figure 3: SchemaMap Example

101:Foo

fName[12]:char
f IDNunuint
fDOB:Date
fSalary:float
fTaxCode:int

102:Foo

fName[12]:char
f IDNunuint
fSalary:float
fTaxCode:int
fDOB:Date

103:Foo

fName:string
fEmployeelD:int
fCodeNum:short
fSalary:float
fTaxCode:int

(fIDNum)

UML Example 10: SchemaMap Example

two other variations of Foo and has assigned them id's 102 and 103. The UML
notation for the three versions of Foo in UML Example 10 shows how each version
differs from the other. Figure 3 shows what the contents of the SchemaMap would
look like if the client with schema id 101 requested a schema map from the server.

11

4. Load or save contents of client objects.
a. When saving an object from the client to the server, it is not necessary to

have the schema map for the object, since the schema map is only used to
map fields of different Schemas to the client's schema. When saving an
object, it should always be saved in the schema of the client who is saving it.
Saving an object is simply a matter of calling the virtual save method for the
persistent object. This method will create an objectData instance and fill it
with the contents of the object. It will also take care of saving the data for any
super classes. The objectData is then returned from the save method and
sent to the server to be stored.

b. To load the contents of an object, an instance of Ob j ectData must be sent
from the server to the client. This Ob j ectData is then passed to the virtual
load method in the object being loaded. The load method looks up the
schema id in the objectData and uses this id to get a FieldMap from the
SchemaMap for the class being loaded. Each field stored in the obj ectData
is then mapped to a corresponding field in the object being loaded using the
FieldMap.

c. As each field is loaded, the type of the field indicated by the FieldData in
the objectData is compared against the type in the SchemaField in the
Schema for the object. If the two types match, then a binary load of the field
can be done. If the field types don't match, then a type conversion will have
to be done. This is done using the Property library, which allows a
Property class to represent an instance of any type. Additionally it allows
one type to be converted to another type. The Property library is
implemented using templates and run-time type identification. Because of
this, it is very flexible, but does not provide the highest possible performance.
Since the Property library is only used if the types of a field don't match,
the user should see optimal performance during normal use of the schema-
mapping algorithm.

d. The actual data for each field is stored in the FieldData class inside the
obj ectData class. The only exception to this is the storage of instances of
other persistent objects. The Obj ectData contains a list of Obj ectDatas
for fields that are instances. If a field's type indicates that it is an instance of
another object, then the Obj ectData for that field will have to be found in
the instance list and then passed to the load method of the object instance.

In practice, the order in which events occur is different then they have been stated so far. The
following list shows a realistic sequence of events that would occur when saving an object.

1. The user creates a new object and tries to save it to the server.
2. Client code checks for a valid schema id and sees that it hasn't been set yet.
3. Client sends the schema to the server and the server replies with the id for the

schema along with the ids for all of its super classes.
4. The user's object is encoded into an instance of an obj ectData class using the

virtual save method.
5. The obj ectData is sent to the server to be saved.

The following list shows an example of the order of events when trying to load an object from
the server. In this example, we are assuming that this is the first time an object of this class has
been loaded from the server.

1. The client requests the loading of a particular object from the server.
2. The server returns the Obj ectData for the client's object.
3. The obj ectData is passed into the virtual load method of the client's object.
4. The load method tries to get the SchemaMap for the object from its schema. The

SchemaMap doesn't exist yet.

12

5. The load method needs the schema id in order to request the SchemaMap from the
server. The schema hasn't been registered yet, so the schema doesn't have an id
yet.

6. Client code sends the schema to the server and receives back the schema id of the
class.

7. Client then requests a SchemaMap from the server using the schema id. Client
receives back the SchemaMap. The SchemaMap is stored in the Schema for later
reuse.

8. The load method loads the contents of the object using the Obj ectData and the
SchemaMap.

There is a special case that needs to be addressed when loading objects. This is when a
different client saves an object with a new variation on a schema we have already loaded. In this
case, the client program has an existing SchemaMap that doesn't contain an entry for the new
schema stored on the server. If the client were to try to load this object, it would need to deal with
this situation. The following list shows the steps for handling this case.

1. User requests the load of an object recently saved to the server by a different client
with a different schema.

2. The server returns the obj ectData to the client.
3. The obj ectData is passed in to the virtual load method of the user object.
4. The load method finds the existing SchemaMap and tries to get the FieldMap for the

schema id contained in the obj ectData.
5. The FieldMap is not found, at this point it is determined that the SchemaMap must

be out of date and a new SchemaMap should be requested from the server.
6. The client code requests a new schema map from the server using the client's

schema id for the object that is being loaded. The server returns a new SchemaMap
for the requested schema id.

7. The load method tries to find the FieldMap again, this time it succeeds.
8. The user object is loaded using the FieldMap.

The server has three primary responsibilities. They are saving registered Schemas, allocating
new schema ids, and creating schema maps. The tasks of registering Schemas and allocating
new schema ids are closely related, since the client never explicitly requests either. The client
simply requests the schema id for a schema. The client doesn't know if the schema is already
registered, or is a new schema. The following list shows the steps used to register a new schema
on the server.

1. The server receives a request for the schema ids of a class and its super classes.
2. The server gets a list of all previously registered classes with the same class name.
3. It then searches the list for a schema that matches the schema for which the client

has requested an id. A schema is considered a match if it inherits from the same
classes, has the same number and order of fields, and has the same names and
types. Inheritance is matched based on class name, not schema id.

4. Once it determines that there is no match for the client's schema, the server allocates
a new schema id and saves the schema in its list of registered Schemas.

5. At this point a recursive call is made to get the schema id for any super classes.
6. A list of class names and schema id pairs is returned to the client.

The next list shows the steps involved with providing the schema id for a class that has
already been registered with the server.

1. The server receives a schema along with a request for its id from the client.
2. The server gets the list of all schemas that match the class name of the client's

schema.
3. It then looks for a matching schema in the list, and an exact match is found.
4. The schema id of any super classes is obtained by recursively requesting their ids

13

5. A list of class names and schema id pairs is returned to the client.

When a client request a schema map for a particular schema, the client needs to only provide
the schema id of the schema for which it needs a map. The server must first get the schema of
the client's class using the id, and then build a SchemaMap for it. For the purposes of this
discussion, the client schema will be the schema from which we are mapping, and the server
schema will be some variation of that schema to which we are mapping.

1. The server receives a request from a client for the schema map of a particular
schema id.

2. The server gets the schema for the specified client schema id.
3. Next it gets a list of all Schemas that have the same class name as the client schema.

This list should contain an entry for the schema that the client is requesting the map
for.

4. Next, the server has to build the SchemaMap by going through the list of Schemas
and creating a FieldMap that maps from the schema in the list to the client schema.

a. First it creates a new FieldMap with the number of entries set to match the
number of fields in the client schema.
Next it must go through all the fields in the client schema and find a matching
field in the server schema based on field name or previous field name.
If a match is found, then the server's field number is entered in the
FieldMap at the position indicated by the client's field number.
If no match is found, then a value of-1 is entered in the FieldMap for that
client field. This indicates that there is no match for the client's field in the

b.

d.

<<client schema>>

cschema:Schema

fSchemaId=101
fClassName=Foo

map:SchemaMap

..!

w 101:FieldMap W

102:FieldMap W

^ w

«server schemas>>

si:Schema

fSchemaId=101
fClassName=Foo

s2:Schema

fSchemaId=102,
fClassName=Foo

s3:Schema

fSchemaId=103
fClassName=Foo

UML Example 11: FieldMap Object State Diagram

server's schema.
5. All the resulting field maps are accumulated into an instance of SchemaMap. UML

Example 11 shows what the resulting SchemaMap would look like.
6. The SchemaMap is returned to the client.

Client Schema Mapping Implementation
Now that the algorithms for schema mapping have been described, the exact

implementation and interaction of the classes ObjectData, FieldData, SchemaMap and
FieldMap will be explained.

14

The SchemaMap class uses FieldMap objects to map fields from a client schema to each
schema variant. The UML class diagram for SchemaMap and FieldMap is shown in Figure 4
below.

SchemaMap
[for each Schema ID]

+addFieldMap(id : SchemalD, in aMap : FieldMap):void
+findFieldMap(SchemalD id): FieldMap
+load(s : DataStream): void
+save(s : DataStream): void

▲
W

V

FieldMap

+setField(clientField : int, serverField : int,
fieldType : SchemaField::EFieldType, fieldLength : int):void

+getFieldNumber(client : int) : int
+getFieldLength (client : int) .- int
+fieldTypeMatches(in field : SchemaField):bool
+load(s : DataStream): void
+save(s : DataStream): void

Figure 4: SchemaMap and FieldMap

SchemaMap maps a schema ID to a FieldMap. The SchemaMap should contain all possible
schema IDs and hence all possible FieldMap objects. In practice, a SchemalD can be a long
int or a class composed of multiple ids such as database id and a unique id within the database.
If a schema ID is not found, then a new schema has probably been registered on the server and
a new SchemaMap needs to be requested. The FieldMap maps the client's Schema fields to
the fields in another version of same class. FieldMap's accessor methods getFieldNumber,
getFieldLength and f ieldTypeMatches take the client field number and return the
appropriate information for the field it maps to in a server schema. SchemaMap and FieldMap
will be created on the server side and used on the client side. Both objects contain load and
save methods for serialization that allow them to be passed from the server to the client easily.
DataStream is used by load and save to represent a binary stream that operates on some
device. A possible device can be a file, socket, or buffer.

SchemaMap and FieldMap are used in the loading and saving of DBObject objects and
their associated data. Obj ectData and FieldData are classes that store the fields' data and
provide random accessing of the fields' data. The UML Diagram for obj ectData and
FieldData is shown in Figure 5 on page 16.

Each object's data is actually stored in the FieldData class. The FieldData class stores
the binary data for each field of an object. There are four broad types of data that can be stored:
built in types, arrays of built in types, object instances and arrays of object instances. Built in
types are the compiler-supported types such as bool, int, float, double. The methods
addField and addFixedArrayField must be overloaded to support all possible types of
fields to be stored, including basic types and special database primitives. The actual
implementation of each basic type may vary with the programming language. In C++, templated
member functions allow one function to be overloaded once for each type. In Java, the class
would require each method to be written for every type. The method addlnstanceField and
addlnstanceFieldList are used to allow composite relationships with a child class or
classes. Object instances are objects that are not pointers to other objects but actual instances
of another object within one object. The addlnstanceField adds a single object instance and
addlnstanceFieldList adds an array of object instances.

15

ObjectData

+getFieldData() : FieldData &
+setSchemaID(id : SchemalD)
+getSchemaId() : SchemalD
+setClassName(name : String)
+getClassName(): String
+addSuperClass(data : ObjectData *)
+findSuperClass(in name : String): ObjectData
+load(s : DataStream &)
+save(s : DataStream &)

super
classes

field
instances

T\
the addField and
addFixedArrayFi el d
methods must be
implemented for every
type OR use a
templated member
function in C++ to
support all types

FieldData

+setNumFields(num : int)
+getNumFields0 : int
+addField(val : int)
..+addField(val : float)
+addField(val : bool)
+addFixedArrayField(val
+add!nstanceField(data

int) : int *, arrraySize
ObjectData)

+addInstanceListField(instances : List<ObjectData>)
+getFieldDataStream(fieldNum : int): DataStream
+getField(type : SchemaField: :EFieldType, len .- int,

fieldNum : int, out value : Property)
+getFieldInstance(fieldNum : int): ObjectData
+getFieldInstanceList(fieldNum : int):
List<ObjectData>

+load(s : DataStream): void
+save(s : DataStream): void

Figure 5: ObjectData and FieldData

Implementations may vary for how the binary data should be stored inside FieldData. In
our implementation, the FieldData class uses a byte array to store the raw field data and an
index array to give the position where each field starts in the byte array. Whatever the
implementation, field data needs to be accessed randomly based on its position to support the
loading process. Obj ectData and FieldData serialization methods load and save allow the
objects to be passed back and forth between the client and the server.

There are multiple ways to extract data back out of FieldData. The method
getFieldDataStream provides raw access to a field and should be used when there is no type
mismatch for a basic type. The method getField returns the data in a Property and is
generally used for type mismatch cases. The getFieldDataStream and getField methods
provide access to data stored using any of the addField or addFixedArrayField methods.
The method getFieldinstance returns the obj ectData for a field number. This method is
used to extract the data that is stored by addinstanceField. Likewise, the method
getFieldlnstanceList returns the ObjectData list stored by addlnstanceFieldList.

The algorithm that handles the client side loading and saving is encapsulated into a class
called Deserializer. The DBSerializer class is shown in Figure 6 on page 17.
DBSerializer is a base class that provides three common methods and three pure virtual
methods that need to be implemented by each subclass. There must be a DBSerializer
subclass for every level in a DBObject subclass and therefore for every schema. The
DBSerializer constructor takes a reference to a DBObj ect that it is serializing. The methods

16

load, loadFields and save are implemented once in the DBSerializer base class. The
methods setFieldData, saveFields and getSchema must be implemented for every
subclass. The implementations of the methods are described in the following paragraphs and
sequence diagrams.

DBSerializer

+DBSerializer(DBObject &parent)
+load(objData : ObjectData *)
+loadFields(fieldData : FieldData &,

fieldMap : const FieldMap kfieldMap)
+setFieldData(fieldNum : int, fieldData :FieldData &

serverFieldNum : int)
+save() : ObjectData *
+saveFields (fieldData : FieldData &)
+getSchema () : Schema &

Figure 6: DBSerializer Class Diagram

The implementation of saving objects in the client involves the DBObj ect, DBSerializer,
ObjectData, FieldData and Schema classes. The sequence diagram for the client-side
saving algorithm can be seen in Figure 7 on page 18. The diagram shows how a simple class
DBFOO is saved to the database in a client application. Class DBFOO in this example simply
inherits from DBObject and has two fields, f ieldi_str and f ield2_int.

The sequence diagram shows the schema registering process and the serialization of a
simple object. The diagram starts with a user invoking the save method. Subclass
implementations of the DBObject save method use an associated subclass of DBSerializer
to serialize the object into an obj ectData. The first thing the DBSerializer does is to ensure
the schema associated with the DBFOO has been registered. The schema is retrieved at the
DBFooSerializer level since the subclass knows about the static DBFOO: :getClassinfo
method. If not already registered, the schema can than register itself with the server and receive
a valid SchemaiD back from the server. In the sequence diagram, the Serverstub is a class
that manages all socket communication with the database server process. Once a valid
SchemaiD has been assigned to DBFOO'S schema, the DBSerializer can create and fill in the
obj ectData. The SchemaiD and class name are stored inside the obj ectData. The
saveFields method is then called passing it the Obj ectData's FieldData. The
saveFields method must be implemented at the DBFooSerializer level since only the
subclasses know what fields should be saved for each object, DBFOO'S two attributes are stored
by calling FieldData's addField method, passing the current value for each field. In this
simple case, DBFOO only contains two variables and no super classes so the serialization process
is finished. The obj ectData is then sent to the server via the Serverstub class and the
obj ectData is destroyed on the client side. In more complex cases where saving objects
requires multiple levels of inheritance, each DBObject subclass's save method would invoke the
super's save method and store the super class ObjectData inside the subclass's ObjectData
by calling Obj ectData's addSuperClass method.

The next sequence diagram on page 19 describes how to load an object.

17

•^

1'

v v

°- z T -n a) LJ

1' 1 'S 1'

h-C

■HZ

-n =a
<D CD

D O
OJ Ä

£H

o 3

s
D
s-

o
CD

O W)

5>
3.

-i

A

h-D

(T

(D 'Si
3 3-

-i
Of

Figure 7: Saving DBObject Sequence Diagram

The implementation of the client-side loading algorithm for a subclass of DBObj ect is shown
through the interaction of DBSerializer, ObjectData, Schema, SchemaField, FieldMap

18

and FieldData classes. The sequence diagram showing the algorithm and the classes
interaction is shown below in Figure 8. The sequence diagram describes loading the same
simple DBFOO object that was used for the saving diagram in Figure 7 on the previous page. The
sequence diagram below assumes the objectData has already been retrieved from the server
and all schemas are already registered.

The loading algorithm is initiated by calling Deserializer's load method with the
obj ectData that was retrieved from the server as the sole parameter. The load method starts
by retrieving the FieldMap from DBFoo's Schema. The Schema retrieves the FieldMap using
the obj ectData's SchemalD to find the appropriate FieldMap via the SchemaMap. The

Figure 8: Loading DBObject Sequence Diagram

19

obj ectData's SchemaiD is used to lookup the FieldMap. Since the obj ectData originates
from the server, the loading algorithm needs to map the data from the server schema to the
client's schema. The DBSerializer's loadFields method is then called with the FieldData
and the FieldMap as arguments. The FieldData is retrieved from the obj ectData.

The loadFields method loads the FieldData by using the associated FieldMap. The
FieldData associated schema may be a different version from the client's schema so the
FieldMap must be used. The algorithm starts by iterating through the client's schemaField
objects. Inside the for loop, the initial task is to use the client field number to get the associated
server field number from the FieldMap. Calling the FieldMap's getFieldMap method,
passing in the client field number, retrieves the server field number. The client field number and
server field number are defined by their order in the schema. If there is no associated server
field, then the server number will be invalid and the client field's value will remain in its default
state and the loop will continue. Otherwise, the client field has an associated server field and it
will be loaded. The direct field copy, implemented in DBFooSerializer's setFieldMethod,
uses the FieidData's getFieldDataStream method to extract and assign the value. If the
client field and the server field are of the same type, then a direct field copy can be done. If the
client field and the server field are of different types, then a type conversion must be done. In this
implementation, the Property converters are used to convert a value from one type to another.
For the type mismatch case, the DBFOO class method setFieid is used to set the field's value.
Note that two separate methods are used for the direct field copy versus the type mismatch case.
The direct field copy method is necessary since it is more efficient than the type mismatch
method.

Server Schema Management Implementation
The server is responsible for keeping track of registered Schemas, allocating new schema

ids, and creating schema maps. The means by which the server stores registered Schemas is
beyond the scope of this paper, since it would require too much knowledge of the purpose of the
system that is using these schema algorithms. For the purposes of discussing the implementation
of the schema id allocation and schema map generation algorithms, it is assumed that a class
SchemaFile exists. A single instance of the SchemaFile class exists in the server. The UML
for the SchemaFile class is shown in Figure 9. The SchemaFile class stores all registered
Schemas and allows the server to get a particular schema from a schema id, and to get a list of

<<singleton>>
SchemaFile

+registerSchema(singleSchema : const Commonschema &) : SchemaiD
+loadSchema(id : SchemaiD) : CommonSchema *
+buildSchemaMap(id : SchemaiD) : SchemaMap *
+saveSchema()
-newKeyO : SchemaiD
-buildFieldMap(fromSchema : CommonSchema &, toSchema: CommonSchema &): FieldMap *
-lookupSchemas(className : const String &) : List<Schema> *
-validate ()

-fNextSchemalD : SchemaiD
-fClassNameMap : Map<String, ValueList<SchemaID> >
- slnstance : SchemaFile *

Figure 9: SchemaFile Class Diagram

Schemas from a class name. The methods for actually saving and loading a schema are not
shown in the UML diagram and will not be discussed. The important methods in SchemaFile are
the registerSchema and buildSchemaMap methods. The C++ implementation of these
methods is well documented in Code Example 2 below. The SchemaFile class contains two

20

important fields. One is the f NextSchemaiD field, which is an instance of schemaiD. In this
sample implementation, SchemaiD is just a typedef for an integer. The newKey method will be
used to allocate new SchemaiD' s by incrementing the fNextSchemaiD field and returning it's
current value. The f classNameMap field is used to keep track of all schemas that have the same
class name. It does this by associating a class name with a list of SchemaiD' s. As schemas are
registered, the class name map is updated to include the new schema.

Whenever requests to register a schema or get a schema map are received in the server
from a client application, a handler class will be created to handle that particular client request.
Figure 10 shows the UML for two classes called HandlerSchemalD and HandlerSchemaMap.
Each of these classes have an execute method that gets called to perform the actual
processing of the client's request. The execute methods will use the SchemaFile singleton to
perform the task and then send a reply back to the client. The implementation of receiving the
request and sending the reply to the client will not be discussed.

HandlerSchemalD

+execute() : void
-getClientSchema() : CommonSchema &
-recursiveRegisterSchema(clientScham : CommonSchema &,

namelDMap : Map<String, SchemaID> &) : void

HandlerSchemaMap

+execute() : void
-getClientSchemalDO : SchemaiD

Figure 10: HandlerSchemalD and HandlerSchemaMap Class Diagram

Code Example 2 below shows the C++ implementation for the HandlerSchemalD execute
and recursiveRegisterSchema methods.

void HandlerSchemalD::execute()

{
// The Map class is a templated data structure that stores a list of 1-1 mappings
// from one type to another. Here we are mapping a class name to a schema id.
Map<String, SchemaID> classNameMap;

// The ReplySchemalD class's job is to send the resulting class name map
// back to the client. Implementation will not be shown.
ReplySchemalD reply;

try

{
recursiveRegisterSchema(getClientSchema(), classNameMap);

}
catch (InvalidSchemaException &)

{
classNameMap.clear();
reply.setError(elnvalidSchema);

21

reply.setClassNameMap(classNameMap);
reply.send();

}

void HandlerSchemalD::recursiveRegisterSchema(const CommonSchema &clientSchema,
Map<String, SchemaID> &nameIDMap)

{
ScheraalD outID;

// Check and see if the schema is already registered.
bool found = SchemaFile::instance().lookupSchemald(clientSchema, outID);

// if not registered, register it.
if (Ifound)

outID = SchemaFile::instance().registerSchema(clientSchema);

// Store the id in map
namelDMap.insert(clientSchema.getClassName(), outID);

// Get the id of all the super classes
ListIterator<CommonSchema> iter(clientSchema.getSuperClasses0);

for (iter.toFirst(); iter.current(); ++iter)
_recursiveRegisterSchema(*(iter.current()), namelDMap);

}

Code Example 2; HandlerSchemalD Implementation

The implementation of the schema id handler class is fairly straightforward. The execute
method creates an instance of a Map between class names and schema ids as shown in previous
page. It then calls the protected recursiveRegisterSchema method to fill in the contents of
the map. The map is then sent back to the client. The recursiveRegisterSchema method
recursively works its way up the schema inheritance tree and stores the schema id for each level
in the map. This method first checks to see if the schema for the current level of inheritance is
registered already. If it is already registered, then it will use the existing schema id, if not, then it
will obtain a new schema id by registering the schema with the SchemaFile singleton. Finally it
will iterate through the list of super classes and call itself, passing in each super class.

Code Example 3 below shows the implementation of the HandlerSchemaMap execute
method. This method uses the SchemaFile: :buildSchemaMap method to get the schema
map for the requested client schema id. The resulting schemaMap is then sent back to the client.

void HandlerSchemaMap::execute()

{
// build a schema map for the requested schema id
SchemaMap *map = SchemaFile::instance().buildSchemaMap(getClientSchemalD());

// send the resulting SchemaMap back to the client
// (or error if id not found).
ReplySchemaMap reply;
// the map should be valid if id was found
if (map)

reply. setSchemaMap (*map) ,■
else

// ID not found, send back error
reply. setError (ReplySchemaMap : :eInvalidSchemaID) ,-

reply.send();

// clean up the map
delete map;

}

Code Example 3: HandlerSchemaMap execute Method

22

Code Example 4 below shows the implementation of the SchemaFile class. The details of
the implementation of the loadSchema and saveSchema methods are not shown. The
implementation of SchemaFile uses a Map class and a ValueList class who's API is not
shown. As discussed earlier, the Map class is a templated data structure that stores a list of 1-1
mappings between two types. The ValueList class is templated data structure that stores a list
of type values. This class is different from a regular linked list in that it is assuming it is storing
values of built in types, like int or double, as opposed to pointers to structures or objects. A
ValueList does not have to be used, but is merely an optimization that can be made because
the SchemalD type is just an alias for an integer. The UML for the SchemaFile class, shown in
Figure 9 on page 20, indicates that SchemaFile is a singleton. This means that there will be only
one instance of SchemaFile in the server. To implement this, a static pointer to a SchemaFile
is defined inside the SchemaFile class, called sinstance. To access the instance, a static
method called instance is defined that allocates the SchemaFile if needed and returns a
reference to it.

const SchemalD SchemaFile::FIRST_SCHEMAID = 101;
SchemaFile »SchemaFile::sinstance = NULL;

SchemaFile::SchemaFile()
: fNextSchemaID(FIRST_SCHEMAID), fClassNameMap()

{
}

void SchemaFile::validate(const CommonSchema kschema) const

{
if (schema.getClassName () .isEmptyO)

throw InvalidSchemaException("SchemaFile: class name is empty");

}

// This is a static method that implements the SchemaFile singleton.
SchemaFile &SchemaFile::instance!)

{
if (sinstance == NULL)

sinstance = new SchemaFile () ;
return *slnstance;

}

SchemalD SchemaFile::registerSchema(const CommonSchema SsingleSchema)

{
// validate the schema can be registered
validate(singleSchema);

// 1. Save the schema
// Implementation if saveSchema not shown.
saveSchema(singleSchema);

// 2. register in class name to schema id map
// a) store the new id in the class name map
// Get a copy of the list of schema id's for the class name
// from the fClassNameMap. If the specified class name doesn't
// already exist in the map, the (] operator will create a new
// entry.
ValueList<SchemaID> idList = fClassNameMap[singleSchema.getClassName()];

// Store the new id in the vector.
idList.append(registeredld);

// Store the vector back in the fClassNameMap
fClassNameMap[singleSchema.getClassName()] = idList;

// b) save the class name map

23

_saveClassNameMap();

return registeredld;

}

bool SchemaFile::lookupSchemaldfconst CommonSchema sfindSchema,
SchemalD koutld)

{
// validate the schema, this method will throw an exception if there
// is a problem.
validate(findSchema);

// Get the list of existing schema ids for a particular class name
// from the fClassNameMap
ValueList<SchemaID> idList = fClassNameMap[findSchema.getClassName()

// iterate through list of schema ids
CommonSchema *aSchema=NULL;
for (ValueList<SchemaID>::Iterator idlter = idList.begin();

idlter != idList.end();++idIter)

{
// get the schema for the current schema id.
aSchema = loadSchema(*idlter);

// if the Schemas match, then return the schema id.
if (aSchema->isThisLevelEqual(findSchema))

{
outld = *idlter;
delete aSchema;
return true;

}
delete aSchema;

}

// no match was found, return false.
return false;

}

CommonSchema *SchemaFile::loadSchema(SchemalD id)

{
// create a new schema to return to the caller.
CommonSchema »schema = new CommonSchema();

// load the contents of the schema based on the schema id.

// implementation not shown.

return schema;

SchemaMap »SchemaFile:rbuildSchemaMap(SchemalD id)

{
CommonSchema *clientSchema. = NULL;

// try to load the schema we want to build a map for.
// return NULL if the loading fails.
try

{
clientSchema = loadSchema(id);

}
catch (Vortex::Exception &ex)

{
return NULL;

}

24

// get a list of all Schemas with the same class name as the client schema
List<CommonSchema> »serverSchemaList =

lookupSchemas(clientSchema->getClassName());

// create a new SchemaMap that we can add the FieldMaps to.
SchemaMap *schemaMap = new SchemaMap();

// iterate through the list of Schemas with the same class name,
for (ListIterator<CommonSchema> iter(*serverSchemaList);

iter.current();
++iter)

{
// create a field map between the client schema and the current
// schema.
FieldMap *fieldMap = buildFieldMap(*clientSchema, *iter.current());

// add the fieldmap to the schema map. SchemaMap will copy the FieldMap
SchemaMap->addFieldMap(iter.current()->_getSchemaID(), *fieldMap);

// delete the fieldMap pointer since schemaMap copied it.
delete fieldMap;

}

// clean up the client schema and the list of server Schemas
delete serverSchemaList;
delete clientSchema;

// return the resulting SchemaMap.
return schemaMap;

}

FieldMap *SchemaFile::buildFieldMap(CommonSchema &fromSchema,
CommonSchema StoSchema)

{
// get a copy of the list of fields in the client schema.
ValueList<SchemaField> schemaFields = fromSchema.getSchemaFields();

// create a new field map with the number of entries matching the number
// of fields in the client schema.
FieldMap »fieldMap = new FieldMap(schemaFields.count());

// iterate through all the fields in the fromSchema
for (ValueList<SchemaField>::Iterator iter = schemaFields.begin();

iter != schemaFields .end() ,-
++iter)

{
// find a matching field in the toSchema
const SchemaField *matchingField =

toSchema.findSchemaField((*iter).getName());

// if match was found then set the field number in the fieldMap
if (matchingField != NULL)

fieldMap->setField((*iter).getPosition(),
matchingField->getPosition(),
matchingField->getType(),
matchingField->getLength());

else // set field number to -1 to indicate no match,
fieldMap->setField((*iter).getPosition(),

-1,
SchemaField::eUndefinedType,

-1) ;

}
// return the resulting FieldMap

25

return fieldMap;

}

SchemalD SchemaFile::newKey()

{
// save the current key value.
SchemalD key = fNextSchemalD;

// increment the next key value by 1.
fNextSchemaID++;

// return the new key value,
return key;

List<CommonSchema> *SchemaFile::lookupSchemas(const QString &className)

{
// create a new list to store the resulting Schemas in.
List<CommonSchema> *schemaList = new List<CommonSchema>;

schemaList->setAutoDelete (true) ,•

// find the value list associated with the class name
Map<QString, ValueList<SchemaID> >::Iterator nameMapIter =

fClassNameMap.find(className);

// if not found, return empty list
if (nameMapIter == fClassNameMap.end())

return schemaList;

// iterate through the value list of ids, loading each schema and
// storing in the out list
for (QValueList<SchemaID>::Iterator idlter = nameMapIter.data 0 .begin(),

idlter != nameMapIter.data 0 .end() ;+ + idlter)

{
try

{
CommonSchema *aSchema = loadSchema (*idlter);
schemaList->append(aSchema);

}
catch (Vortex::Exception Sex)

}
// return the resulting list of Schemas
return schemaList;

}

Code Example 4: SchemaFile Implementation

26

Advantages and New Features
RASE provides several advantages over typical forms of schema evolution. By always

mapping all variations of the same schema to a client's schema, older and newer client programs
are allowed to co-exist in a well-defined manner. Most systems only allow one true schema,
which is maintained in a central server. Evolving this schema usually involves issuing special
maintenance commands to the server or writing a special client program for this purpose, which is
subject to detrimental human error. Additionally, developers have to ensure that all clients are
then recompiled with the latest schema. RASE eliminates these problems by allowing each client
program to evolve independently, without recompiling other clients, or issuing special commands
to a server.

The RASE algorithm combines flexibility with performance, by storing the object contents in a
form that allows the mapping algorithm to randomly access each field. The same algorithms are
used when loading objects that have matching Schemas and objects whose Schemas don't
match. During normal use, Schemas of the clients and server will match. In this case the
algorithm will be able to perform a high performance direct binary load of each field of a class,
without any type conversions. Additionally, the schema map for each class is usually only
computed once, the first time an object ofthat class type is accessed. The RASE algorithm also
has the advantage of keeping the server responsibilities relatively simple. The server must simply
keep a list of all variations of a class, and be able to provide a map of the fields from one schema
to the other. The client performs the actual work of morphing the contents of one object into
another.

Most object database systems use some type of code generator that converts the developers
object definitions into classes in the language they are programming in. Many of these systems
involve a schema-registering phase, where a database maintenance tool is run that informs the
server of the Schemas the client will be using. RASE eliminates the need for registering Schemas
at compile time. Schemas are registered automatically, and only as needed, when the client
program runs. Additionally, the process of registering a schema is very quick, since the server
does not need to perform any schema evolution or mapping at that point.

In the RASE algorithm, each level of inheritance for a class is considered an independent
schema. A change in the schema at one level of inheritance, does not affect the schema at a
different level. This has the benefit of preventing a trickle down effect when evolving a schema. In
systems that have large or deep inheritance trees, this would prevent the modification of a base
class schema from causing the schema in all other objects in the system to change.

Another indirect but potentially important advantage of using the RASE algorithm and
implementation is the public access to an object's schema. Providing object schema opens up the
door for future uses and applications. For example, the Java language provides a form of
schema access for their objects called reflection. Reflection is the engine behind the JavaBeans
technology that allows components to be plugged together easily. JavaBeans provides a more
generic ability to rapidly develop an application than exists with normal C++. By using the
proposed RASE implementation, the same type of reflection provided by the Java language is
then available in a C++ implementation and therefore C++Beans could be developed.

Alternatives
The code and UML examples in this paper focused mostly on implementing a system in C++.

This was done for convenience, since the object database that this schema evolution algorithm
was developed for was written in C++. These same algorithms could be implemented in just
about any programming language, including Java, SmallTalk, and C. The RASE solution was
presented in the form of an object oriented solution. However, the basic concepts could be
applied in either an object oriented or procedural language.

The examples in this paper were described in terms of an object oriented database system.
The RASE algorithms would work just as well for a distributed component or flat file based
system. In a distributed system, an Object Request Broker (ORB) would be responsible for
allowing two distributed components to talk to each other. The ORB would perform the

27

responsibilities of the server, keeping track of Schemas as components register themselves and
building schema maps for components as needed. In a flat file system, the responsibilities of the
client and the server would be compiled into one program. This would allow a program to save
and load objects and for those objects to evolve over time. It would not allow for a multi-user
system however.

With a minimal amount of added complexity, the schema mapping algorithm can be
expanded to allow the programmer to rename classes and move fields between levels of
inheritance. In order to provide for renaming of fields, the programmer must provide a list of
previous names of the field when defining the object in ODL. In a similar manner, the user could
provide a previous name of a class, or to move a field, the previous class name and field name.
The schema registering algorithm would have to be modified to handle the renaming of a class.
The schema mapping algorithm would have to change to allow fields to map to a different class,
and the object loading routines would have to be able to locate fields up and down the chain of
ObjectData objects for the object being loaded.

Contributions by Inventors
The initial requirements, analysis, and design work was performed by Michael Pilone, Brian

Solan and Gregory Stern in March of 2000. Brian Solan and Gregory Stern performed
implementation and testing of the code, with some assistance from Michael Pilone during June of
2000. Brian Solan and Gregory Stern wrote this paper during March of 2001.

Related Publications
A. Mehta, D. Spooner, M. Hardwick. "Resolution of Type Mismatches in an Engineering

Persistent Object System." Online. Internet. Rensselaer Design Research Center and
Computer Science Department, Rensselaer Polytechnic Institute. 1993.

Young-Gook Ra, E. Rundensteiner. "A Transparent Object-Oriented Schema Change Approach
Using View Evolution." Online. Internet. Department of Electrical Engineering and
Computer Science; Software Systems Research Lab, University of Michigan, Ann Arbor.
September, 1997.

K. Claypool, C. Natarajan, E. Rundensteiner. "Optimizing the Performance of Schema Evolution
Sequences." Online. Internet. Computer Science Department, Worchester Polytechnic
Institute. March 1999.

K. Claypool, J. Jin, E. Rundensteiner. "SERF: Schema Evolution through an Extensible, Re-
usable and Flexible Framework." Online. Internet. Department of Computer Science,
Worchester Polytechnic Institute. November 1998.

S. Lautemann, P. Eigner, C. Wohrle. "The Complex Object and Schema Transformation (COAST)
Project: Design and Implementation." Online. Internet. Lecture Notes in Computer
Science No. 1341. Montreux, Switzerland. December 1997.

G. Stern, M. Pilone, B. Solan. "A Generic Preference System Pattern and C++ Implementation."
NRL/MR/5707-00-8473. ENEWS Program, Tactical Electronic Warfare Division.
September 2000.

Object Design Inc. "Object Store Users Guide: DML." Twenty Five Mall Road, Burlington, MA
01803. 1993.

Objectivity Inc. "Objectivity Technical Overview." 301B East Evelyn Ave. Mountain View, CA
94041. April 1996.

28

